Transcription activator-like effector nucleases enable efficient plant genome engineering.

نویسندگان

  • Yong Zhang
  • Feng Zhang
  • Xiaohong Li
  • Joshua A Baller
  • Yiping Qi
  • Colby G Starker
  • Adam J Bogdanove
  • Daniel F Voytas
چکیده

The ability to precisely engineer plant genomes offers much potential for advancing basic and applied plant biology. Here, we describe methods for the targeted modification of plant genomes using transcription activator-like effector nucleases (TALENs). Methods were optimized using tobacco (Nicotiana tabacum) protoplasts and TALENs targeting the acetolactate synthase (ALS) gene. Optimal TALEN scaffolds were identified using a protoplast-based single-strand annealing assay in which TALEN cleavage creates a functional yellow fluorescent protein gene, enabling quantification of TALEN activity by flow cytometry. Single-strand annealing activity data for TALENs with different scaffolds correlated highly with their activity at endogenous targets, as measured by high-throughput DNA sequencing of polymerase chain reaction products encompassing the TALEN recognition sites. TALENs introduced targeted mutations in ALS in 30% of transformed cells, and the frequencies of targeted gene insertion approximated 14%. These efficiencies made it possible to recover genome modifications without selection or enrichment regimes: 32% of tobacco calli generated from protoplasts transformed with TALEN-encoding constructs had TALEN-induced mutations in ALS, and of 16 calli characterized in detail, all had mutations in one allele each of the duplicate ALS genes (SurA and SurB). In calli derived from cells treated with a TALEN and a 322-bp donor molecule differing by 6 bp from the ALS coding sequence, 4% showed evidence of targeted gene replacement. The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact designer TALENs for efficient genome engineering

Transcription activator-like effector nucleases are readily targetable 'molecular scissors' for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appre...

متن کامل

DNA replicons for plant genome engineering.

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effec...

متن کامل

Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.

The ability to precisely modify genome sequence and regulate gene expression patterns in a site-specific manner holds much promise in plant biotechnology. Genome-engineering technologies that enable such highly specific and efficient modification are advancing with unprecedented pace. Transcription activator-like effectors (TALEs) provide customizable DNA-binding modules designed to bind to any...

متن کامل

Breakthrough Technologies Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering1[W][OA]

Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chendu 610054, People’s Republic of China (Y.Z.); Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (Y.Z., X.L., J.A.B., Y.Q., C.G.S., D.F.V.); Cellectis Plant Sciences, St. Pau...

متن کامل

Can pseudocomplementary peptide nucleic acid nucleases (pcPNANs) be a new tool for genetic engineering?

Abstract: Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) comprise a powerful class of tools that are redefining the boundaries of biological research. Although these technologies have begun to enable targeted genome modifications, there remains a need for new technologies that are scalable, affordable, and easy to engineer. In this paper, we propose a ...

متن کامل

DNA Replicons for Plant Genome EngineeringW OPEN

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator–like effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 161 1  شماره 

صفحات  -

تاریخ انتشار 2013